

Joana Correia¹, João Requicha^{1,2}, Hugo Pereira¹, Carlos Viegas²; David Gonçalves³, Lara Alves¹, Catarina Ginja³, Cleia Detry⁴, Graça Alexandre-Pires⁵, Sandra de Jesus⁶, Ana Elisabete Pires^{1,3}

1- Faculdade de Medicina Veterinária, Universidade Lusófona, Lisboa, Portugal; 2- Departamento de Clências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal; 3- LARC - Laboratório de Arqueociências, Direcção Geral do Património Cultural, Lisboa, Portugal and CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; 4- UNIARQ - Centro de Arqueologia da Universidade de Letras de Lisboa, Universidade de Letras de Lisboa, Lisboa, Portugal; 5- CIISA - Departamento de Morfologia e Função, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal; 5- CIISA - Departamento de Clínica, Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal

Contact the authors: ana.elisabete.pires@gmail.com

Caliper (precision 0.01 mm)

Maxillary 4th Premolar

How to discriminate teeth from a dog or a wolf in the archaeological record ?

A large reference database (DB) for discriminating odontometric parameters is essential but difficult to obtain in living specimens. To potentially expand such DB, we attempted to validate the precision of measurements obtained via computed tomography (CT) images.

How? By assessing if measurements obtained in skulls from deceased extant dogs through a caliper were similar to the ones obtained via CT scans.

Reference collection of extant dogs skulls (FMV, U.Lusófona)

Which teeth were measured ? Which measures were taken ? ٠

The mesiodistal lenght (MD) and vestibular palatine width (VP) of 22 canines and 23 fourth premolar maxillary (PM⁴) teeth were measured via caliper and CT images. Measurements from left and right teeth were pooled together to enlarge the sample. Two observers took 5-6 measurements (in 2 consecutive days) independently for each method of measurement and the median value was used in this research.

• How were differences evaluated ?

The relative technical error of measurement (%TEM) was estimated for both approaches while differences, correlations, and agreement between methods were evaluated through non-parametric Wilcoxon, Spearman correlation and Bland-Altmann analysis¹.

Data revealed a small % technical error for both caliper and CT (<5%) except in the inter-observer assessment of the canine VP width obtained via the CT method.

% TEM	Caliper [min-max]	CT [min-max]
Intra-observer	Obs1 [0.63-3.29] Obs2 [0.74-2.28]	Obs1 [0.76-3.0] Obs2 [1.70-2.81]
Inter-observer	[0.72-3.27]	[3.22-6.40]

Comparison between methods cannot be extrapolated from one tooth to another and instead needs to be tested for each tooth:

ШÀ	Measurement (mm)	Maxillary	PM ⁴ tooth			Canin	e tooth		
õ		Caliper	СТ			Caliper	СТ		
oserver :	Mesiodistal (MD) mean±SD [min-max]	16.59±3.16 [10.6-23.27]	16.64±3.17 [10.89-23.37]	<i>p<0.01</i> ; r=.44	YES	9.30±2.37 [5.63-14.4]	9.20±2.24 [5.97-14.68]	non significant	YES
for o	Vestibular palatine (VP) mean±SD [min-max]	6.70±1.22 [4.07-9.04]	6.62±1.21 [4.26-9.11]	<i>p<0.05;</i> r=.31	NO	5.83±1.64 [3.03-10.2]	5.82±1.61 [3.28-9.99]	non significant	NO
	Spearman correlation	p<1	0.01			p<	0.01		

• In general, CT measurements tended to underestimate the caliper values - a need to refine landmarks in CT images was identified;

• Despite these ambiguous results, the absolute difference between methods in average never exceeded 1 mm which legitimizes the use of CT as a complement for data acquisition which has been accomplished so far exclusively through direct measurements of dog teeth;

· A more detailed analysis using more observers is advisable to further refine our results;

post-depositional concretion.

- CT images from living animals stored at veterinary clinics potentially provide reliable data to include in databases for Canis lupus familiaris;
- For some archaeological Canis specimens, on which the caliper cannot be used (e.g. when carbonate concretions cover up the tooth), tomographic images may be the only practical alternative to collect odontometry data.

• THE CASE OF A MESOLITHIC IBERIAN DOG •

using a bone algorithm and shown in three planes using Horos medical imaging software³: sagittal (A, D, G), transverse (B, E, H)

		Righ	t								Max	cilla					_				Lafe	MD	Caliper	0	nd	nd	nd	11,60	n		nd	nd						11.30	5.20	10.60	;0	13.50	21.60		
															~							Lenght	CT		9.27	23.73	13.95	11.71			12.11	5.77						11.60	5.66	10.84		13.09	23.87		
			010	MA	0.0	6	\frown	11			6	6	6	0	11	\cap		0.0	mi	000		VP	Caliper		nd	nd	nd	nd			nd	nd						8.2	nd	nd		nd	nd		
		(12)	U	LU1	N	M	A	1)		1	1	(A)	11	4	15	A	M	N	RU	110	(M)	Width	ст		6.12	9.58	6.78	5.26			6.62	4.16						7.58	4.04	4.97		6.21	9.87		
		\sim	5	W	V	V	\bigcirc	V	V	U	U	U		Q.	7	C	Y	2	5	100	0			зМ	zM	1M	4PM	3PM	2PM	1PM	с	3 I	zł	11	11	lz	13	с	PM ₁	PMz	PM ₃	PM4	M1	Mz	M ₃
		110	109	108	107	105	105	104	103	102	101	201	202	203	204	205	206	207	208	209	210			411	410	409	408	407	406	405	404	403	402	401	301	302	303	304	305	306	307	308	309	310	311
		2M	1M	4PM	PM	2PM	1PM	c	ų	21	4	11	12	р	с	PM1	PM2	PM ³	PM4	MI	M2			\frown	-	5	~	~			A	0		\frown	\cap	(m)	0	1	~	0	\bigcirc	~	0		\cap
MD	Caliper	nd	nd	nd	nd			nd						nd	11.00		11.70	14.00	19.30		-			(9)	A	tal	EN?	573	Fri I	17	M	M	M	H	H I	11	M	1	A	R	FRI	M	M	TA	9
Lenght	ст	9.54	16.28	19.33	13.40			10.95						8.27	11.00		12.09	13.11	19.60					\bigcirc	~	UV	VV	00	00	U	1	V	U	U	U	U	V	1	0	00	00	VV	00	C	\cup
VP	Caliper	nd	nd	nd	nd			nd						nd	7.50		nd	6.00	9.00															-											
Width	ст	7.02	8,82	7.97	5.10			6.24						5.78	6.50		5.12	5.14	8.64					Right									N	lanc	lible										Left

0.89 and 0.4 to 1 mm for length and width, respectively.

All teeth were able to be measured via computed tomography

REFERENCES: Bland JM, Altman DG (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307-310; ² Detry C, Cardoso JL (2010). On some remains of dog (*Canis familiaris*) from the Mesolithic shell-middens of Muge, Portugal. J. Archaeol. Sci. 37, 2762–2774; ³ Björn K (2017) Evaluation of Open Source Medical Imaging Software: A ca Study on Health Technology Student Learning Experience. Procedia Computer Science 121: 724–731; Filoyd MR. (1991) The modified Triadan system: nomenclature for veterinary dentistry. J Vet Dent, 8(189; ⁴ Smith Jp. Dodson P (2003) A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Retrieved from http://repository.upenn.edu/ees_papers/34 von den Driesch A (1976) A Guide to the Measurement of Animal Bones from Archaeological Sites. Peabody Museum of Archaeology and Ethnology. Harvard University.

ACKNOWLEDGEMENTS: Simon Davis, zooarchaeologist, and Miguel Ramalho Director of Museu Geológico (Lisbon, Portugal).

Computed tomography (CT) scan

ed LX/i. Ge

Maxillary Canine